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ABSTRACT 'I

The problem of structure determination for a deterministic class of polynomial input-output
differential systems is formulated as a minimum norm-discrete time optimal control problem.
The order of the differential equation and the degrees of the polynomials involving the input-
output variables play the role of multiple discrete-times while the coefficient parameters play
the role of a discrete control variable. The basis of the parameter identification technique is
Shinbrot's method of moment functionals using linear combinations of commensurable sinusoids
as the modulating functions. Given the system input-output data on a finite time interval, the
underlying computations involve calculating a finite set of Fourier series coefficients of moments
formed from the data, which can be efficiently carried out via an FFT algorithm, followed by a
sequence of singularity tests performed on a controllability type Gram determinant that arises
from the formulation.
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*. 1. INTRODUCTION

The problem of structure determination has been considered for the class of linear systems,
both stochastic and deterministic, in determining such structural parameters as the
controllability/observability indexes [1-3]. However, within the context of system identification,
relatively little attention appears to have been given to any class of nonlinear systems. One
such class is considered here, namely those single input-single output deterministic systems that
can be described by a polynomial input-output differential equation of finite order involving
finite degree polynomials of the input-output variables. Examples of this class would include
linear feedback control systems with zero memory polynomial type nonlinearities inserted in the
forward and feedback loops, and certain classical nonlinear differential equation models such as
the Van der Pol and Duffing equations. The major assumptions are that the input-output data
is noise-free, or can be made essentially noise-free by appropriate filtering, and that upper
bounds are known for the degrees of the polynomials and the order of the differential equation.
Although the assumption of noise-free data is idealistic, the technique utilizes Shinbrot's method
of moment functionals 14] with linear combinations of commensurable sinusoids as the modulat-
ing function basis, thus facilitating a certain measure of selective filtering on the data as a result
of the need to calculate only a finite set of Fourier series coefficients while avoiding the necessity
to estimate unknown initial or boundary conditions. Previous developments of this approach
have focused on linear differential systems [5,6], a class of bilinear systems [7], and polynomial
input-output differential systems of the type to be considered here 18], all of presumed known
order and structure as far as the differential equation model is concerned.

Following the formulation of the problem as a triple indexed discrete system, a solution is
proposed using minimum norm-time optimal control ideas, and some discussion is included
regarding noise and bandwidth considerations.

2. FORMULATION

Let [u (t ),y(t )] denote the input-output pair observed free of significant measurement
noise on a finite time interval I0,T], and let p denote the differential operator d/dr so that
p2 -d 2/d, etc. The class of polynomial differential equations relating u (t) and y(t) is taken
of the form

i -oi' =ok =0o

0<9 < T, a (0,0)=0, i -- ,1,2..n

where the a,(j,k) represent parameters which are to be determined along with the structural
parameters (n,m ,I), the latter consisting of the order of the differential equation n and the

highest degrees (m ,l) of the polynomials involving the input-output variables.2 The choice of
the time interval length T will be discussed in Section 4.

The actual system order no and the degrees of the polynomials (mo,1 0) are assumed to
satisfy the set membership expressions

aoE (1,2..fN}, moE 0 E (1,2..T) (2)

where (9,91-,T) represent the previously mentioned a priori upper bounds on the structural

2 Existence and uniqueness of solutions to (1) on [0, T] is tacitly assumed for whatever values are as-
signed to the a,(j ,k), given that the data is bounded and piecewise continuous.
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parameters (n,mj). In order to focus on determining (no,mo,j o), the model (1) will be re-
parametrized as follows:

A I Wi I?( t )1 + ,
0 =v(t)+ E [E(k)p + (t)] + b i( p''[u(l i  (3)

+ ,E E-yj(jk)p 1 [u(t)J'1 (t)Ik

where bi represents the Kronecker delta.3 The presence of 6k I serves the dual purpose of assur-
ing that the highest derivative term appears linearly as p '(t ) and that causality is preserved
in the input-output relation. In turn, this assures that (3) has a normal form state space reali-
zation of the form

V(t) = g(O(t),,(t))

where c is a column vector, prime denotes transpose, and as pointed out in [8] the nonlinear
terms in g(x,u) are polynomials in the pair (c'z,u). Normalizing the coefficient ao(0,1) to
unity in passing from (1) to (3) is somewhat arbitrary but can be seen to be valid if the transfer
function for the linearized differential equation, i.e., linearized about u =V =0, does not contain
a pole at the origin.

Shinbrot's method of moment functionals facilitates the conversion of a linear differential
relation, such as (1) or (3), to an algebraic equation in the coefficient parameters via the use of
so-called modulating functions. The resulting algebraic equation is characterized by functionals
on the data. A motivating factor for the developments in 15-81 has been the specification of
modulating functions comprised of linear combinations of the commensurable sinusoids
(sink wo0t ,cosk w0t ), k =-O,I..L, wo=2r/ T, because the functionals on the data that result from
the conversion are linearly related to the first L Fourier series coefficients of moments formed
from the data which can be calculated to any desired degree of accuracy by a sufficiently high
order discrete Fourier transform (DFT). In turn, these DFT's can be efficiently evaluated by a
Fast Fourier Transform (FFT) algorithm. In order to apply these relations to the problem at
hand, let At ) denote the (2L +1) dimensional column vector of sinusoids:

fAt) = Col [1;cosot ,sinwot ;cos2wot ,sin 2wol; ;cosL wOt,sinLwOt] (4)

o<t<T, wo = 2r/T.

Following the procedure outlined in 15,81 and given the upper bound integer if for the system
differential equation order, let C denote the (2L +1-N)X(2L +1) matrix constructed (offline)
such that $(I ) defined by

-*(I) = C t(s) (5)

satisfies the end point conditions'

3 That is, 6k 1= 1 if k =1, while 6& 1=0 if k V1.

' It is easily shown that the matrix C has full rank and that each of its (2L +!-N) row vectors is
determined by the solution to a Vandermonde type matrix equation 15,61.

oa* * * C
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-(' o) - 0(')(T 0, ; =0,I ..(W-I). (6)

This construction results in a (2L+-if) dimensional vector valued modulating function of

order f in which5 the derivatives p' 4(t )=0(t) have the representation (cf. (4))

(-1)'p'O(t) = CD'f(t), i=0,1,2 . (7)

where D is a block diagonal matrix defined by

D woDiag[0 1 0 2) ( ) ](8)
and D o is defined as the identity matrix.

In accordance with the modulating function approach, (3) is multiplied by ((t) and
integrated by parts n times while noting (6) and (7), thereby obtaining the vector equation

U I n M

CY + N N CD'+" Z(O,k),i(k) + E CD'-'Z(jO).(j) (9)
i=k -1 i=1j=1

+ CD- 1 Z (j,k)'7 (j,k)
*=ljflk=1

where (Y,Z(j,k)), O<j5m, O<k <1, are vectors of finite Fourier series coefficients of

moments of the data defined by
T

Z(j,k) = fu (t )Jy Iu(t )1' f(I )dt (10)
0

Y - Z(0,'1).

These vector valued functionals of moments formed from the data can be calculated using an

FFT algorithm as discussed in [8].

After introducing some notation, a rearrangment of (9) leads to the following linear equa-
*tion in the coefficient parameters:

-CY = H (1)

where the (2L +l-if)X3 matrix H(m ,1;i,j,k) and 3Xl vector (i,j,k) are defined by6

H(m,;i,i,k) = D- [±Dk 1 Z(0,k, I~Z(i ,0) , Z (iik (12)

• and

.c,(k) 1
O(i,j,k) = M ()

* respectively.

Notice that 0(t) is also a modulating function of order n for any n <ff.

The reason for including the reciprocals (1/m ,1/1) in the first two columns of (12) is to account
- for the expansion of the first two double sums in (9) to a triple sum so that (11) and (9) are equivalent.

* ... P- **.
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Except for the re-parametrization and notational differences, (11) is equivalent to the
regression equation derived in [8] and, as such, can be used as the starting point for formulating
a least squares estimate of the coefficient parameters under the proviso that the structural

* parameters (n ,m ,!) are known. However, the emphasis here is on obtaining values (no,molo)
which are correct insofar as the given input-output date is concerned. For this purpose, it will
be assumed that (11) contains a sufficient number of algebraic equations to permit a one-shot
solution, pending some nondegeneracy conditions on the data, regardless of the actual values
(no,mo,lo) as long as (2) is satisfied. Since the number of unknown coefficient parameters is
possibly as large as W(T+ffl+TM) and since the number of rows in the matrix C is (2L +1-jf),
it follows that L must be chosen in the general nonzero input situation to satisfy the inequality:

2L+I-if > if(T+if-+Ti-) or 2L > ii(T+;n+T7r+I)-I. (13)

If on the other hand the input is zero on 0, T], i.e., u (t )=O, 0<t < T, and if the time
interval [0, T] has been preceded by an interval during which all the system modes have been

. excited, then (3) reduces to

0 y (t) + aj( p'+ ]

and (11) can be replaced by the simpler expression
aI

-CY = E EHo(i,k)Po(i,k) (14)
i=lk=1

where the (2L +1-fr) dimensional column vector Hi,k) and the scalar 00(i,k) are defined by

Ho(i,k) = CD'-+6k Z(O,k) and 00(i,k) -- ai(k). (15)

In this special situation there are at most fiT unknown coefficient parameters that can be deter-
mined given the data [0,y(t)] on [0,T] so that the condition on L can be replaced by the less
stringent inequality

2L > 1r(T+1)-1. (18)

In summary for this section, the problem of structure determination for the class of poly-
nomial differential systems modeled by (3) can be stated as finding the smallest triple indexed
"discrete time" integers (no,mo,1o) and "control vector" triple indexed sequence 9(ij,k ) such
that (11) is satisfied given the discrete indexed "system matrix" H(m,1;i,j,k) and the output
vector CY. This problem will have a solution only if L has been chosen to satisfy (13), or less
restrictively (18) if the zero input prevails on [0,T], and only if the vector CY is reachable for
some (n,mI) satisfying (2), a condition which reflects back on the input-output data
[u(t ),y(t )] on [0,T] as will be seen below.

3. MINIMUM NORM-TIME OPTIMAL SOLUTION

As formulated above, structure determination is a simplified version of a discrete system
optimal control problem considered by Sarachik and Kranc [9], although the discrete time is tri-
pie indexed. Following the analysis used in [9], consider the linear functional derived from (11):

U.-X'CY V X)H(mI;ij,k)0(i,j,k) (17)

where X is an arbitrary (2L +1-WF) dimensional column vector. The right hand side of (17) will
be viewed as an inner product for fixed values of (n ,m ,1) by defining the 3XI vector function



45-

K (i, ,k) a
K(ij,k) = H'(m,I;i,j,k)X. (18)

Using (18) and the inner product notation < , >, (17) is represented by

-X'CY = <K,>. (19)

Taking absolute values of both sides of (19) and applying the Schwarz inequality to the right
hand side:

Ix'CYl < 1 K I I 1D (20)
where the norm on 0 is defined by

De, E rO(Jk)~J (21)

* and the norm on K is similarly defined.

From the inequality (20) it can be deduced that if the problem has a solution for an arbi-
trary vector CY, it must be the case that

Il > IK*I -

where K*(i,j,k)=H'(m,1;i,j,k)t and )t is that value of X which solves the minimization
problem

Mr I K X I H'(m,1;iJk)H(m,1;iJk)X

subject to

-' Y = 1.

The latter problem is equivalent to minimizing the quadratic form

I K 12 - X' W(n,m,I)X + p(I+X'CY) (22)

where p is a scalar Lagrange multiplier and W(n ,m ,l) is the Gram matrix defined by7

I -in
W(n,m,t) = E E H(m,1;i,j,k)H'(m,1;iJ,k). (23)

Assuming the inverse of W(n ,m ,1) exists for some ln ,m ,L), the minimizing value of X subject
to the indicated constraint is found to be

" = - W-(n,m,l)CY
Y' C' W-(n ,m,1)CY

If a solution to the above minimization problem exists for some (no,mo,10) satisfying (2), a
solution exists for all (n ,m ,I) satifying the following

no <"<ff, mo0 _m <f, to<<' (24)
This is due to the monotonicity property of the Gram matrix (23) in that using matrix inequali-
ties in the sense of symmetric positive semidefiniteness:

7 Note that W(n ,m ,l) can be interpreted as an output controllability Grammian for the problem
at hand.

.- ,
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j W(no,mo,Lo) < W(n,m,l)

holds for all (n ,m ,l) satisfying (24). This coupled with the fact that the norm (21) is a mono-
tonically increasing function of (n ,m ,l) allows for the conclusion that structure determination

-. for the model (3) given the data at hand corresponds to the smallest triple of integers which
- satisfy the determinant inequality:

-, det W(no-1,m 0-1,1 0-1) < to (25)

together with one or more of the following inequalities:

det W(no,mo,10) > to or det W(no-,mo,lo) > to

det W(no-l,mo-l,lo) > to or det W(no-1,m 0 ,10-1) > to

det W(no,mo-1,10-1) > to or det W(no,mo-1,10) > to

". det W(no,mo,lo-I ) > t o

where to is a positive parameter selected by the user to discriminate between the theoretical zero
"" value and small threshold effects of noise, roundoff errors, and the like.

Nothing is claimed about the existence or uniqueness of such a triple (no,mo,lo) satisfying
(25). About all that can be claimed at this point is that if a minimizing triple can be found
satisfying (25), then that triple (no,mo,lo) solves the structure determination problem relative to
the data at hand. More analysis is needed to find conditions on the input V (t) which would
guarantee the existence of a solution. The problem is complicated by the fact that the modulat-
ing functions act as a filter on the data and that the various polynomials arising from the
differential operators in (3) may have some common factors, i.e., they may not be coprime.
Nonetheless, (25) is a relatively easy test to perform in consideration of the complexity of struc-
ture determination problems, and any minimizing solution to (25) is a likely candidate for the
structure parameters pending additional tests involving a variety of inputs, initial conditions,
etc.

Assuming the existence and determination of a minimizing triple (no,mo,lo) satisfying (25),
the system coefficient parameters for (3) can be obtained using the least squares procedure of [8],
or if sufficient confidence exists for the one-shot data at hand, the conditions for equality in the
Schwarz inequality (20) yield the parameters directly as

*(i ,j ,k) - -H'(mo,lo;i ,j ,k )W-(no,mo,1o)CY (26)

I. <i <no, lI_<j m0,  I<k <10.

In the special case of the zero input on [0,T], W(n ,m,l) is to be replaced by

Wo(n,l) = H H0 i,k)H (i,k) (27)

where Ho(i,k) is defined by (15). Assuming existence and determination of a minimizing
integer pair (n0 ,10) satisfying

det W(no-1,l 0-1) < to (28)

together with one or more of the following inequalities:

N-"-*-l % _- 9  r%2 %A&V.. * o "' ......... .....* '_ _''. . . , € . -- , *. . ' ' € , , * . e ,, . .. % -.. ., . , . .... . ,... : .. . -- ..-.... *.-...
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det Wo(no,Lo) > t0 or det Wo(no,lo-1) > to

det Wo(no-1,1 0) > £o,

the corresponding relation to (26) in this special situation is

' (i,k) = vi(k) - -H?(i,k)1V 1 (no,1o)CY (29)

l<i<n0 , 1<k <10.

4. CHOICE OF (LT) AND NOISE CONSIDERATIONS
Suppose the system bandwidth wb is approximately known. Although the value of w6 is

likely to be input dependent for a nonlinear system, it seems reasonable to presume that such a
value may be available from practical considerations. Clearly the highest frequency Lw 0 in the
modulating functions should be chosen comparable to the system bandwidth else higher fre-
quence noise will be present in the vectors Z(j,k ), i.e.

L o = L 2r/ T ; w6. (30)

Assuming the inequality (13) is approximately satisfied with equality, it then follows that a
guideline for choosing T is

T ('(+ + +l-)/ .(31)

In the special case of a zero input on 10,T1, the analogous relation for a guideline in choos-
ing T-=T o is

T o 9 (ff(T+l)-1)ir/wb. (32)

5. CONCLUSIONS

The determinant inequalities derived in (25) and (28) indicate ways of testing for the struc-
tural parameters of the model (3), given upper bounds for the indexes and assuming the system
belongs to this class of nonlinear models. Although relatively simple in appearance, this simpli-

. city undoubtedly belies a variety of the difficulties that might be encountered in a practical
situation. Not only will the presence of significant amounts of noise invalidate the conclusions,
but there are potential difficulties resulting from the projections on the data due to the modu-

*lating functions and the possibility of common factors in the polynomials corresponding to the
differential operators in (3). The noise problem can be mitigated to some extent by a careful

*choice in modulating function frequencies as explained earlier. In fact, there is no need to pick
the first L commensurable sinusoids; rather, the basis set {sinlwot,coslwot), <t<T,
wo=21r/ T, I E( 1,.. IL) will suffice, where (I,.. IL) is any suitably chosen integer set. The

-" possibility of modes in the data which are orthogonal to one or more of the modulating func-
tions is practically unimportant if the number of such modulating functions is sufficiently large,
i.e., L is chosen sufficiently large, to encompass all the essential information in the data. How-

,%- ever, such a choice may then require a very long time interval [0,T] or high frequency noise
problems may be encountered, etc. Further analysis will be needed to resolve these questions.
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